You are here: Home / GW Innovations / Technologies Available

Biological Scaffold Delivers Light for Rapid Organ and Tissue Growth

Technology #015-044-george

Questions about this technology? Ask a Technology Manager

Download Printable PDF

Image Gallery
Categories
Researchers
Jonathan George
Ph.D. Student, School of Engineering and Applied Science
External Link (sorger.seas.gwu.edu)
Managed By
Brian Coblitz
Sr. Licensing Associate coblitz@gwu.edu (202) 994-4345
Patent Protection

Photon Enhanced Biological Scaffolding

PCT Patent Application PCT/US2016/018534
Publications
Scattering and absorption control in biocompatible fibers towards equalized photobiomodulation
Biomedical Optics Express, Vol. 8, Issue 3, pp. 1589-1597 (2017)
Files and Attachments
015-044-George_Scaffold_Summary_2015.05.14_v1.pdf [PDF]

A researcher at GW developed an optically active biological scaffold to speeds regeneration and growth of tissues and organs. This technology uses a light source to illuminate a transparent, biocompatible biological scaffold that passes the light to cells growing on, and near, the scaffold. The light activates biological processes within the cells to increase their growth rate. 

Some existing biological scaffolds promote cell growth through chemical and structural properties. However, the innovative techniques developed at GW add light-induced cell growth techniques to create a new type of scaffold. Red and infrared light are known to promote cell growth in culture, but this technique was not previously applied via a scaffold, which can deliver light deep within 3D tissue cultures. 

This innovation can enhance growth of organs and tissues both in vivo and in vitro. In addition, it can optimize the growth of genetically modified cells for the production of biological therapeutic molecules. Implants for bone replacement and nerve cell generation can greatly benefit from light-enhanced biological scaffolding. 

This technology can be implemented in multiple ways. An implant may be placed inside of the body during surgery. The light source can be embedded within the body, or within the implant, and powered by battery, induction, or wires extending out of the body. Alternatively, the light source can be placed outside of the body and the light can be directed into the implant with the use of an optical conduit. The implant can be made from biodegradable materials such that it is absorbed into the tissue as the tissue grows around it.

Applications:

• Growth in vivo and in vitro of organs and tissues 

• Regeneration on an implant for bone replacement 

• Generation of nerve cells

• Growth of cells for the production of biological therapeutic molecules 

Advantages:

• Faster regeneration process and tissue growth 

• Optimal photobiomodulation achieved by an optical power applied equally throughout tissue 

• Capacity to choose between increasing the growth rate of a tissue and selectively increasing the growth rate of specific cells within the tissue/organ

Cells growing on 3D scaffold

2D scaffold